
Overview and Architecture

Fun With Kafka

Stephen Nimmo

Senior Specialist Solution Architect

Energy Pod - Houston

1

2

▸ Developed at LinkedIn back in 2010, open sourced in 2011

▸ Designed to be fast, scalable, durable and available

▸ Distributed by nature

▸ Data partitioning (sharding)

▸ High throughput / low latency

▸ Ability to handle huge number of consumers

What is Kafka ?

3

▸ “ … a publish/subscribe messaging system …”

▸ “ … a streaming data platform …”

▸ “ … a distributed, horizontally-scalable, fault-tolerant, commit log …”

What is Kafka ?

Concepts

4

Architecture

Kafka Ecosystem

Zookeeper

Broker

Broker

Broker

Producer Consumer

Updates
Offset

Gets
Broker ID

Push Message
to Topic

Pull Message
from Topic

▸ Messages / records are sent to / received from topic

･ Topics are split into one or more partitions

･ Partition = Shard

･ All actual work is done on partition level, topic is just a virtual object

▸ Each message is written only into a one selected partition

･ Partitioning is usually done based on the message key

･ Message ordering within the partition is fixed

▸ Clean-up policies

･ Based on size / message age

･ Compacted based on message key

Topic & Partitions

Topic & Partitions

old new

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8

Producer

Partition 0

Partition 1

Partition 2

Producing messages

Topic & Partitions

old new

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8

Consumer

Partition 0

Partition 1

Partition 2

Consuming messages

▸ They are “backup” for a partition

･ Provide redundancy

▸ It’s the way Kafka guarantees availability and durability in case of node failures

▸ Two roles :

･ Leader : a replica used by producers/consumers for exchanging messages

･ Followers : all the other replicas

･ They don’t serve client requests

･ They replicate messages from the leader to be “in-sync” (ISR)

･ A replica changes its role as brokers come and go

Replication
Leaders & Followers

Broker 1

Partitions Distribution
Leaders & Followers

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 2

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 3

T1 - P1

T1 - P2

T2 - P1

T2 - P2

▸ Leaders and followers spread across the cluster

･ producers/consumers connect to leaders

･ multiple connections needed for reading different partitions

Broker 1

Partitions Distribution
Leader election

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 2

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 3

T1 - P1

T1 - P2

T2 - P1

T2 - P2

▸ A broker with leader partition goes down
▸ New leader partition is elected on different node

▸ They are really “smart” (unlike “traditional” messaging)

▸ Configured with a “bootstrap servers” list for fetching first metadata

･ Where are interested topics ? Connect to broker which holds partition leaders

･ Producer specifies destination partition

･ Consumer handles messages offsets to read

･ If error happens, refresh metadata (something is changed in the cluster)

▸ Batching on producing/consuming

Clients

▸ Destination partition computed on client

･ Round robin

･ Specified by hashing the “key” in the message

･ Custom partitioning

▸ Writes messages to “leader” for a partition

▸ Acknowledge :

･ No ack

･ Ack on message written to “leader”

･ Ack on message also replicated to “in-sync” replicas

Producers

▸ Read from one (or more) partition(s)

▸ Track (commit) the offset for given partition

･ A partitioned topic “__consumer_offsets” is used for that

･ Key → [group, topic, partition], Value → [offset]

･ Offset is shared inside the consumer group

▸ QoS

･ At most once : read message, commit offset, process message

･ At least once : read message, process message, commit offset

･ Exactly once : read message, commit message output and offset to a transactional

system

▸ Gets only “committed” messages (depends on producer “ack” level)

Consumers

Broker 1

Producers & Consumers
Writing/Reading to/from leaders

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 2

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 3

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Producer Consumer

Consumer

Producer

Consumer

▸ The consumer asks for a specific partition (assign)

･ An application using one or more consumers has to handle such assignment on its own,

the scaling as well

▸ The consumer is part of a “consumer group”

･ Consumer groups are an easier way to scale up consumption

･ One of the consumers, as “group lead”, applies a strategy to assign partitions to

consumers in the group

･ When new consumers join or leave, a rebalancing happens to reassign partitions

･ This allows pluggable strategies for partition assignment (e.g. stickiness)

Consumer: partitions assignment
Available approaches

▸ Consumer Group

･ Grouping multiple consumers

･ Each consumer reads from a “unique” subset of partition → max consumers = num

partitions

･ They are “competing” consumers on the topic, each message delivered to one

consumer

･ Messages with same “key” delivered to same consumer

▸ More consumer groups

･ Allows publish/subscribe

･ Same messages delivered to different consumers in different consumer groups

Consumer Groups

Topic

1
9

Consumer Groups
Partitions assignment

Partition 0

Partition 1

Partition 2

Partition 3

Group 1

Consumer

Consumer

Group 2

Consumer

Consumer

Consumer

Topic

2
0

Consumer Groups
Rebalancing

Partition 0

Partition 1

Partition 2

Partition 3

Group 1

Consumer

Consumer

Group 2

Consumer

Consumer

Consumer

Topic

2
1

Consumer Groups
Max parallelism & Idle consumer

Partition 0

Partition 1

Partition 2

Partition 3

Group 1

Consumer

Consumer

Consumer

Consumer

Consumer

Kafka + Kubernetes

AMQ Streams on OpenShift

22

When Kafka meets Kubernetes….

AMQ STREAMS

AMQ STREAMS

● Easy scalability
○ Running Kafka on bare metal has a high bar

(ops competency, physical servers, scaling up/down, etc.)
● Automation

○ Configuration as code and automated ops via Operators
○ Tedious ops actions like rolling updates and software upgrades are

greatly simplified
● High availability

○ Restoration of Kafka nodes by rescheduling pods in the event of failure
● Messaging use cases are often latency sensitive

○ Can provision cluster/topics as the same time as the application

2
5

Cluster Operator

Zookeeper

Kafka

Cluster
Operator

Config
Map

Manages

Creating and managing Apache Kafka clusters

DEPLOYING A CLUSTER
TRADITIONAL APPROACH

Zookeeper
cluster

Kafka
cluster

DEPLOYING A CLUSTER

Topic & User
operators

Zookeeper
cluster

Kafka
cluster

Cluster
operator

Kafka
Custom

Resource

Demo

28

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

29

Thanks!

